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The rapid growth of Twitter has triggered a dramatic increase in spam volume and sophis-
tication. The abuse of certain Twitter components such as ‘‘hashtags’’, ‘‘mentions’’, and
shortened URLs enables spammers to operate efficiently. These same features, however,
may be a key factor in identifying new spam accounts as shown in previous studies. Our
study provides three novel contributions. Firstly, previous studies have approached spam
detection as a classification problem, whereas we view it as an anomaly detection problem.
Secondly, 95 one-gram features from tweet text were introduced alongside the user infor-
mation analyzed in previous studies. Finally, to effectively handle the streaming nature of
tweets, two stream clustering algorithms, StreamKM++ and DenStream, were modified to
facilitate spam identification. Both algorithms clustered normal Twitter users, treating out-
liers as spammers. Each of these algorithms performed well individually, with StreamKM++
achieving 99% recall and a 6.4% false positive rate; and DenStream producing 99% recall and
a 2.8% false positive rate. When used in conjunction, these algorithms reached 100% recall
and a 2.2% false positive rate, meaning that our system was able to identify 100% of the
spammers in our test while incorrectly detecting only 2.2% of normal users as spammers.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Social networking sites have exhibited exponential growth over the last few years. Among the most popular sites are My-
Space, Facebook, and most recently Twitter. While the popularity of MySpace is declining and Facebook’s membership has
plateaued at around 130 million, Twitter is still growing with around 25 million active users. Facebook’s slowing expansion
due to market saturation stands in contrast to Twitter’s growth rate of about 30% annually [9].

Unfortunately, the proliferation of social networking has contributed to an increase in spam activity [15]. Spammers send
unsolicited messages to users with varying purposes, which include, but are not limited to advertising, propagating pornog-
raphy, phishing, spreading viruses, and degrading Twitter’s reputation [4]. ‘‘Hashtags’’, ‘‘mentions’’, and shortened URLs are
frequently abused by spammers, making them indicators that a tweet may be from a spam user. Mentions are normally used
to reply to another user or to send a message, which will appear on his profile. A spammer may exploit this by mentioning
other users in order to spread spam beyond his limited following. Hashtags are used to denote trending topics making them
more searchable for users and are abused by spammers, who attach the most popular hashtags to messages with links to
unrelated topics. URL attacks are aided by Twitter’s 140 character limit on tweets as many legitimate users need to use
link-shortening services to reduce the length of their URLs. This allows spammers to deceive users as the shortened links
do not appear to be malicious, which is particularly important because links are a necessary part of almost any spamming
attack. On Twitter, links are especially dangerous because it is very difficult to determine their destination without following
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them to potentially harmful sites [14]. The ability to disguise URL destinations has made Twitter a particularly attractive tar-
get for spammers, which has motivated the development of several spam detection techniques.

In the first study focusing on Twitter spam detection, a data set of approximately 25,000 Twitter accounts was collected
over several weeks with a web-crawler using Twitter’s API [15]. A variety of predictors were then used for classification using
10-fold cross validation with a set of user and content based features. The users classified as spammers by the algorithms
were then manually checked to determine the false positive rate. The Naïve Bayes Algorithm provided the best results with
91.7% precision, recall, and F-measure.

Researchers in [4] collected an enormous data set comprised of every known active public account on Twitter as of August
2009. This data set included millions active and inactive users and 1.7 billion tweets. Tweets containing one of the three most
popular hashtags (#musicmonday, #MichaelJackson, and #SusanBoyle) were then identified and removed for manual label-
ing. A Support Vector Machine running 5-fold cross validation was used on this subset to evaluate the effectiveness of a sim-
ilar feature set to [15]. They were able to identify 70% of spammers while maintaining a relatively low false positive rate of
about 4%.

One of the most recent studies [13] used a collection of learning algorithms including Random Forest, Support Vector Ma-
chine, K-Nearest Neighbor, and Naïve Bayes. Each was used to evaluate a labeled data set of approximately 1000 Twitter ac-
counts utilizing a similar feature set to the other previously mentioned studies [4,15]. The Random Forest algorithm
produced the top results with over 95% precision, recall and F-measure. SVM performed nearly as well, achieving around
93% in each category.

In each of these previous studies, classification was utilized for spam detection on Twitter. The aim of this study is to de-
velop an anomaly detection system for identifying spammers on Twitter using account information and streaming tweets.
Typically binary classification applies to a data set that has balanced class labels, while anomaly detection is effective when
the majority of a data set is one class; data outside that class are outliers. Due to the speed and volume of Twitter traffic,
stream mining is the most natural technique for spam detection. Data streams are characterized by large volumes of contin-
uous data evolving over time. Because of this, stream mining must make use of only one pass over the data. Therefore it is
preferable for use in the Twitter environment where millions of tweets are posted every day.
2. Materials and methods

2.1. Data and their representation

The data set for this study included 3239 user accounts with a sample tweet from each account. Among the 3239 users,
208 were spam accounts from [15]. Because an estimated 6% of all Twitter accounts are spammers, our 208 spam users were
combined with 3031 randomly selected verified normal users to form our complete data set. The 3031 normal users were
randomly selected from a set of 37,000 accounts that tweeted during a one-hour period on March 3rd 2012 using the Twitter
Streaming API. Each instance, consisting of the collected user account information and a sample tweet, was manually labeled
as spam or non-spam in order to enable precise evaluation of our spam detection algorithms’ performance. This process
takes a great deal of time due to hourly limitations on requests made to Twitter. While studies such as [15,4] have opted
for a larger data set with incomplete results, studies like [13] have chosen smaller data sets to facilitate more thorough anal-
ysis. Because we wanted more conclusive results, we elected to use a smaller data set that could be manually labeled.

After being labeled, the instances were divided into two separate sets: training and testing. Each set contained approx-
imately 1500 normal and 100 spam users, which reflects the ratio of spam to non-spam users on Twitter (Table 1). The train-
ing set was used to tune the parameters of the algorithms that would be used in the final tests. Each instance was then
parsed and represented by a vector of 107 numerical feature values.

The features used to represent each instance fall into three principal categories: content, user information, and tweet text
(Table 2). Content-based features include link, mention, and hashtag counts denoted by ‘‘http’’, ‘‘@’’, and ‘‘#’’ respectively.
Links are a necessary tool for distributing spam content and as such are included in nearly every spam tweet. The presence
of hashtags and mentions in a large percentage of tweets is indicative of a spammer [15] because these tools increase audi-
ence size. User-based features include the number of followers, the number of accounts followed, and the follower ratio.
Table 1
Training and testing set data.

Label Number of users

Training Spam 104
Non-spam 1483
Total 1587

Testing Spam 104
Non-spam 1548
Total 1652



Table 2
Feature list.

Feature number Feature description

F1 Follower count
F2 Friend count
F3 Favorites count
F4 Listed count
F5 Tweet count
F6 Re-tweet count
F7 User verified
F8 Age day
F9 Follower ratio
F10 Link count
F11 Reply/mention count
F12 Hashtag count
F13–107 One-gram characters
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These three features all relate to the tendency of spammers to follow large numbers of users with a low percentage following
them back. Other important user statistics include favorites, account age, the number of lists on the account, and re-tweet
count. Information such as account age and tweet count is informative because of the limited life-span of spam accounts on
Twitter. These features are listed in Table 2, where features F1, F2, F9, F10, F11, and F12 were used in [15], and the remaining
were novel features proposed in this study. Tweet text-based features, introduced in this study, are based on a simple count
of 95 one-gram characters. This 95 character subset was chosen from the complete ASCII set for accessibility on a standard
US keyboard. The combination of the previous 12 features with these 95 one-grams forms a total of 107 features.

2.2. Methods

To detect spam on Twitter, modified DenStream and StreamKM++ stream clustering algorithms are proposed. The novelty
of our approach is to treat spam identification as an anomaly detection problem rather than as a classification problem. In
this anomaly detection approach, a clustering model is built on normal twitter users with all outliers being treated as spam-
mers. In this manuscript we use the terms instance and point interchangeably in the description of our methods, since in
some contexts one is clearer than the other.

2.2.1. Density-based clustering
Density-based clustering does not require the input of a predefined number of clusters, and can form clusters with arbi-

trary shapes. Some examples of density-based clustering algorithms are DBSCAN [8], OPTICS [2], and PreDeCon [6,11]. This
type of clustering is traditionally done in batch learning environments, but recent research in the area of stream data mining
has led to the development of multiple stream density-based clustering algorithms. One such stream data mining algorithm
is DenStream, which applies a damped window to DBSCAN [7].

DBSCAN: DBSCAN [8] is a popular density-based clustering algorithm with two simple parameters, e and minimum
points. The e parameter is used to define the e -neighborhood of a point as all of the points that are within a distance of e
of the first point. More formally, an e-neighborhood of a point p in the data set D is mathematically represented as:
N�ðpÞ ¼ fq 2 D : distðp; qÞ 6 �g;
where distðp; qÞ is the Euclidean distance between the points p and q. Once DBSCAN calculates the e -neighborhood for a sin-
gle point, it considers the neighborhood as a core-object if there are more points than the minimum points parameter within
the neighborhood. If a core-object is found, the clustering expansion proceeds with the points in the e -neighborhood of the
core-object. Once a core-object which represents a cluster is found, DBSCAN randomly selects another point and continues
until all other points have been selected. As one of the first density-based clustering algorithms, DBSCAN has served as the
basis for many different density-based clustering algorithms.

DenStream: DBSCAN, while simple and effective, is not designed to handle dynamic data streams. By extending the con-
cept of core-objects to core-micro-clusters, DenStream [7] is able to cluster in the data stream environment. Micro-clusters
are compact representations of large sets of dense data weighted by a fading function, which is defined as:
f ðtÞ ¼ 2�kt ;
where k > 0 is the decay factor and t is the current time-step. Core-micro-clusters further differ from the traditional core-
objects of DBSCAN with the inclusion of three new attributes, weight, center, and radius. These attributes are used in the
clustering as the radius of a core-micro-cluster must be less than e and its weight must be greater than another user-defined
parameter l. The weight, center, and radius can be calculated for a set of close points p1, p2, p3, . . ., pn at time t, with time-
stamps T1, T2, T3, . . . , Tn using the following formulas:
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The core-micro-cluster adds a decay factor to the core-objects of DBSCAN, but is unable to be updated as new data points
arrive. To introduce this functionality into DenStream, a potential core-micro-cluster or p-micro-cluster is employed. p-Mi-

cro-clusters use the weighted linear and squared sums, CF1 and CF2, to determine the center and radius values. CF1 and CF2

are calculated using the formulas
CF1 ¼
Xn
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which change the formulas for the center and radius to be
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Although p-micro-clusters allow DenStream to cluster incoming dense points, one more data structure is needed to handle
dynamic data streams. An outlier-buffer is used to temporarily hold any data points that are not considered part of p-micro-
clusters. This buffer maintains these points until they create a dense micro-cluster and are able to become a p-micro-cluster.
These outlier-micro-clusters or o-micro-clusters are necessary in case the data stream changes significantly over time.

Using these concepts, DenStream initially receives a set of points, on which DBSCAN is run to create an initial set of p-
micro-clusters. Once the initial p-micro-clusters are formed, DenStream waits until a new point arrives from the stream. This
new point p first attempts to join its nearest p-micro-cluster. If the point falls within the radius of the nearest p-micro-clus-
ter, it is merged and the radius, center and weight of the cluster are updated. If p fails to merge with a p-micro-cluster, it then
attempts to merge with an existing o-micro-cluster in the outlier buffer. If the new o-micro-cluster now has a weight large
enough, it becomes a p-micro-cluster and is removed from the outlier buffer. If the point p is unable to merge with any other
micro-cluster, DenStream creates an o-micro-cluster on p and places in the outlier buffer. After the new point has arrived,
DenStream will periodically check and remove any o-micro-clusters which have a weight that falls beneath the lower weight
bound. This bound is calculated using the formula
nðtc; toÞ ¼
2�kðtc�toþTpÞ � 1

2�kTp � 1
;

where tc is the current time and t0 is the creation time of the o-micro-cluster.
In this study we view spam detection on Twitter as an anomaly detection problem, therefore DenStream was modified by

removing certain functions so that the normal models made of p-micro-clusters would not be tainted by instances classified
as spam. This change will likely leave out a few normal instances from the clustering, but it safeguards the accuracy of the
predictions as the streaming nature of DenStream will adapt to gradual changes of normal behavior. The p-micro-clusters in
DenStream are used to model normal instances. If any incoming point is not merged with a p-micro-cluster, it is classified as
abnormal and placed in the outlier buffer until deletion. By removing the function for an o-micro-cluster to become a p-mi-
cro-cluster, this modified DenStream can only cluster instances that are considered normal. The overall modification is dis-
played in Algorithm 1.

Algorithm 1: Modified DenStream
� Initial Phase:

s Run DBSCAN on first 300 points to generate a normal model of p-micro-clusters
� Online Phase: For each point p that arrives from the stream

(continued on next page)
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s Attempt to merge p with nearest p-micro-cluster
j If successful, consider as normal
j Else, consider as spam
2.2.2. k-Means based clustering
In contrast to density-based clustering algorithms, k-means based clustering algorithms form spherical clusters using

Euclidean distance. StreamKM++ was chosen from among these for spam detection because of its speed and
effectiveness.

k-Means Clustering: k-Means [12] is a well-known clustering algorithm which finds a predefined number of clusters
k. In the first step of k-means, k points are randomly selected as centers and used to cluster all remaining points. Once
every other point is associated with a center, the mean for every cluster is calculated and named the new center. This
process continues until the centers no longer move [12,16]. Although k-means is able to effectively cluster similar points
together through the Euclidean distance, the user needs to know how many clusters should be found. If an incorrect k
value is chosen, the clustering can be inaccurate, and multiple selections for k are often recommended to find the best
model [16].

One of the biggest shortcomings of the k-means algorithm is the random selection of initial centers. If k-means selects
two centers that are very close to each other, the resulting clusters have the potential to be inaccurate. To minimize these
types of errors, Arthur and Vassilvitskii [3] proposed the k-means++ algorithm, which first chooses one initial center with a
uniform probability. Then k-means++ chooses the next center by calculating new probabilities for every other point using

the formula distðx;cÞ2P
x2X

distðx;cÞ2
, where distðx; cÞ is the shortest distance from a point x in data set X to its closest center c already cho-

sen. By doing this, the starting centers will most likely be far enough apart to allow the original k-means algorithm to run
successfully.

k-Means++ improves the clustering performance of k-means, but is designed to process batch data. To add the ability for
k-means++ to update its clusters as new points arrive from a data stream, StreamKM++ was developed [1]. StreamKM++
introduces the concept of a coreset which is defined as a weighted point, a subset of the input. Clusters built on these core-
sets are a good approximation of the clustering of the original points [10]. To begin clustering, StreamKM++ first extracts a
small set of points from the data stream and uses a merge and reduce scheme to keep the coresets manageable [10]. The
number of coresets is a user-defined parameter m recommended as m ¼ 200 � k [1]. Once the number of coresets is deter-
mined, k-means++ clustering can be performed using the coresets as points. If a clustering model needs to be generated,
StreamKM++ algorithm runs k-means++ five independent times and the tightest clustering result is chosen. The implemen-
tation of StreamKM++ in MOA [5] generates clusters whenever the number of points fills a sliding window of user-defined
size. By implementing coresets and multiple runs of k-means++, StreamKM++ is able to effectively cluster streaming
data.

To apply k-means-based clustering to spam detection on Twitter, some modifications were made to the StreamKM++
algorithm [5]. First, an additional parameter e was added as the threshold for a point to be considered part of a cluster found
using k-means++. Second, a detection scheme was implemented in order to classify points the moment they arrive from the
stream. As each new point comes in, our modified StreamKM++ finds the nearest coreset cluster based on the most recent set
of centers and calculates the Euclidean distance. If the distance is above the value of e, then the point is detected as spam and
is not inserted into the nearest coreset. Using this technique, spam instances are prevented from entering into the coresets.
The modified StreamKM++ is further defined in Algorithm 2.

Algorithm 2: Modified StreamKM++
� Initial Phase:

s Generate a k-means++ clustering model based on the coresets of the first 300 normal points
� Online Phase: For each point p that arrives from the stream

s If p fills the sliding window
j Run k-means++ to generate a new model

s Calculate distance from p to nearest cluster
j If the distance is less than e,
� p is considered normal and merged with coreset

j Else
� p is considered spam and removed
2.2.3. StreamKM++ and DenStream combined
We combined the two algorithms DenStream and StreamKM++ to further improve the spam detection while maintaining

a low false positive rate. StreamKM++ was observed in our experiment to be better suited for detecting all spam instances
without regard for incorrectly classifying normal ones. For this reason, we decided to choose three e values that have near
perfect detection but with a high, medium, and low false positive rate. This allows StreamKM++ to guarantee that predicted
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normal instances are in fact normal. The StreamKM++ component then outputs all predicted classes to be used by
DenStream.

After StreamKM++ has determined its true negatives, DenStream assumes that every StreamKM++ predicted normal in-
stance is correct, which lowers the false positive rate of DenStream. By carefully choosing a moderate value for e, DenStream
also corrects many of the false positive mistakes made by StreamKM++ and makes the final predictions (Algorithm 3).

Algorithm 3: StreamKM++ and DenStream combined
� Run modified StreamKM++ algorithm to classify with zero false negatives.

s Output predicted class values
� Run modified DenStream using the instances with predicted classes from StreamKM++.

s Assume predicted normal instances are true negatives
s Output spam prediction results
To measure the performance of our spam detection systems, we employed the use of many commonly used metrics. If an
instance is considered spam by the algorithm, it is either a True Positive (TP) or False Positive (FP) depending on if the pre-
diction is correct. Similarly if an instance is correctly clustered into the normal model it is a True Negative (TN), otherwise it
is a False Negative (FN). All four of these counts are used to determine the detection rate (recall), false positive rate, and the
F-Measure.

2.3. Statistical significance of predictions

In order to determine the statistical significance of our predictions we demonstrate that it is very improbable that they
are the result of random prediction. In the testing data set, the order of the initial 300 training instances was changed to
randomize the initial model. The labels of the remaining instances were shuffled keeping the same distribution of the ori-
ginal instances. As a result some spam instances would be labeled normal and some normal instances labeled spam. This
procedure was repeated to generate 1000 files. We performed the tests on each of these files in addition to the original file
Table 3
Comparison of best detection results from individual algorithms (p values are in the subscript).

e Spec. FPR Accuracy Bal. acc. Prec. F-measure Recall

StreamKM++ 1.20 .9358p=0 .0641p=0 .9400p=0 .9631p=0 .5628p=0 .7177p=0 .9903p=0

DenStream 1.13 .9719p=0 .0280p=0 .9731p=0 .9812p=0 .7055p=0 .8240p=0 .9904p=0

Table 4
Baseline detection performance of combined approach (p values are in the subscript).

e Spec. FPR Accuracy Bal. acc. Prec. F-measure Recall

StreamKM++ .50 .7001p=.586 .3000p=.586 .7232p=0 .8500p=0 .2176p=0 .3574p=0 1p=0

Combined 1.13 .9687p=0 .0313p=0 .9711p=0 .9844p=0 .7272p=0 .8421p=0 1p=0

Table 5
Comparison of detection performance with and without one-gram features (p values are in the subscript).

Algorithm e Spec. FPR Accuracy Bal. acc. Prec. F-measure Recall

With one-gram DenStream 1.13 .9719p=0 .0280p=0 .9731p=0 .9812p=0 .7055p=0 .8240p=0 .9904p=0

StreamKM++ 1.10 .9358p=0 .0641p=0 .9400p=0 .9631p=0 .5628p=0 .7177p=0 .9903p=0

Without one-gram DenStream 1.13 .9584p=.115 .0416p=.115 .9612p=0 .9792p=0 .6303p=0 .7732p=0 1.000p=0

StreamKM++ 1.10 .8917p=0 .1083p=0 .8860p=0 .8545p=0 .3864p=0 .5247p=0 .8173p=0

Table 6
Comparison of algorithm detection performance metrics (p values are in the subscript).

e Spec. FPR Accuracy Bal. acc. Prec. F-measure Recall

StreamKM++ 1.20 .9342p=0 .0658p=0 .9393p=0 .9671p=0 .5591p=0 .7172p=0 1p=0

DenStream 1.13 .9687p=0 .0313p=0 .9711p=0 .9844p=0 .7272p=0 .8421p=0 1p=0

Combined 1.20 and 1.13 .9783p=0 .0217p=0 .9800p=0 .9892p=0 .7939p=0 .8851p=0 1p=0
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using the same test parameters. The p values reported in Tables 3–6 are the percentage of randomized predictions which
outperformed our reported results.

3. Results

In this section, we report the spam detection performance of the each individual modified stream clustering algorithm.
The performance of these systems is measured by a variety of metrics including recall, false positive rate, and F-Measure.
Recall is the percentage of spam users detected and false positive rate is the number of users improperly considered as spam.
F-Measure is used in several previous studies in spam detection on Twitter as an overall assessment of performance. Each
algorithm, measured by these metrics, demonstrates its own spam detection capability. Therefore when combined, they
Fig. 1. DenStream spam detection performance metrics by epsilon value.

Fig. 2. StreamKM++ spam detection performance metrics by epsilon value.

Fig. 3. DenStream spam detection performance metrics in relation with false positive rate.



Fig. 4. StreamKM++ spam detection performance metrics in relation with false positive rate.
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compensate for each other’s relative weaknesses and improve detection. In addition to the result tables, graphs are included
to demonstrate the performance of these algorithms over a broader spectrum based on their epsilon values and false positive
rates (Figs. 1–4).

3.1. Spam detection with DenStream

Using our set of features, we attempted to cluster normal instances, treating outliers as spam. In order to achieve optimal
performance, several parameters of DenStream, including initial points, minimum points, e and k, had to be tuned using the
training set. Initial points refers to the number of points used in the initial DBSCAN clustering in DenStream, which was in
this case 300 instances. Minimum points determines the number of points necessary to form a cluster; in our case this value
is three. The decay factor was problematic because it eliminated the core cluster of normal instances before later instances
could be added; for this reason we set k to 0. e was observed to be the most important parameter and underwent the most
extensive tuning. e values were tried in training between .5 and 1.5 in increments of .01. This determined the optimal e value
of 1.13 that was used later on the testing set. DenStream achieved an accuracy of 97.2%, precision of 70.6%, F-Measure of
82.4%, and amazingly, the recall and false positive rate were 99% and 2.8% respectively (Table 3).

3.2. Spam detection with StreamKM++

To choose a valid set of parameter values for testing, we ran StreamKM++ clustering algorithms multiple times in the
training phase, during which StreamKM++’s e value showed the greatest impact on spam detection. We observed through
multiple trials that all normal instances unexpectedly clustered into three groups, which means that the clustering benefits
from having k = 3. To select the number of coresets, the recommended m = 200 � k was first used but resulted in inaccurate
clustering. After this we decided to set m = 60 so that each coreset would be representative of more instances. Because we
used 300 normal instances to generate a model for normal users for both the training and testing data sets, the sliding win-
dow size was set to this value. This means that after every 300 instances arrive on the stream, the k-means++ algorithm is
run. After running multiple trials by varying the e value with the training set, we found that e is optimal between 1.1 and
1.21. When tested, the StreamKM++ algorithm is able to achieve roughly 93% accuracy with perfect recall and a false positive
rate of 8.5%. Because a lower false positive rate is desirable, we further increased the e value until our false positive rate was
below 1% or until the recall drops below 70%. StreamKM++ was able to maintain a 70% recall rate with just over 2% false
positives (Table 3).

3.3. Effect of one-gram features on spam detection

Previous studies mainly used user profile information for classification of spammers on Twitter. In this work we included
additional information extracted from tweet text in the form of one-grams, which improved our detection results of both
algorithms (Table 5). In particular, StreamKM++ increased its recall from 82% to 99% and lowered its false positive rate from
11% to 6%.

3.4. Effect of epsilon values on spam detection

To gain a better understanding of the impact of epsilon values on spam detection, we created graphs which plot the per-
formance metrics (Figs. 1 and 2). Of note is that for epsilon values between 1.15 and 1.25, DenStream was able to maintain all
metrics except for false positive rate above 80%. StreamKM++ did not achieve a range like this because the precision was
significantly lower throughout most of the tests. By definition the specificity and the false positive rate must sum to 1, which



Fig. 5. ROC curve representing spam detection using the DenStream algorithm.

Fig. 6. ROC curve representing spam detection using the StreamKM++ algorithm.
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is why when the specificity increases the false positive rate decreases accordingly. Because a low false positive rate is critical
for spam detection, we wanted to explore its influence on the other metrics (Figs. 3 and 4). We found that DenStream was
able to achieve between 0% and 2% false positive rate with all other metrics above 80%. StreamKM++ produced comparable
results with a 3–10% false positive rate with the exception of precision and F-Measure.
3.5. Spam detection with StreamKM++ and DenStream combined

In our experimental setup of the combined approach, we tested three different values of e to be used in the initial Stream-
KM++ step. The values of .5, 1.2 and 1.25 were chosen as they present a wide range of false positive rates with either perfect
or near perfect recall. This means that all instances classified by StreamKM++ as normal were in fact normal Twitter users,
and that all spam users were still considered as abnormal. The value of .5 was chosen as a test to see how well DenStream
could remove 374 false positives. The range of epsilon values caused StreamKM++ to be inclusive of certain mistakes so that
DenStream could refine the final predictions, particularly in F-Measure and Precision. Of interest is DenStream’s ability to
remove the majority of the false positives left by StreamKM++ while maintaining a high detection rate. This is evidenced
by the test using the initial e of .5 for StreamKM++, in which 374 false positives were reduced to 39 after DenStream. The
p values for Specificity and False Positive Rate for StreamKM++ are high in this case because the parameters are not tuned
to optimize these values; they are built to optimize Recall (Table 4). The combined approach had a recall value of 1 in Table 4
meaning that it detected 100% of the spammers. In the best case this approach produced an F-Measure of 88.5% and a Pre-
cision of 79.4% (Table 6). There is a slight difference in the numerical values reported in Tables 3, 4 and 6 because different
parameters of the algorithms were used to optimize performance.
3.6. p-Values for spam detection

We employed the procedure outlined in Section 2.3 to evaluate the statistical significance of our spam detection. The p-
values of our prediction are reported in Tables 3–6. In the majority of cases the p-value for any particular performance metric
is 0, meaning that of the 1000 randomized predictions none outperformed our results.
3.7. ROC curves for spam detection

Because the false positive rate is so important to spam detection we include ROC curves for each algorithm. To generate
these ROC curves, seen in Figs. 5 and 6, we re-ran both DenStream and StreamKM++ and varied the epsilon range. The goal
was to make the range of values large enough so that we achieved as many False Positive Rates between 0 and 1 as possible.
In both cases, if we used an epsilon value of 0, we would see that the False Positive Rates would be 1 as well as the Recall or
True Positive Rate. We then continued to increase epsilon by an interval of .01 until we saw a False Positive Rate of 0. For
DenStream, this occurred when epsilon was equal to 1.35 and for StreamKM++ it was 3.7. Once we had all of the Recall
and False Positive Rates calculated, we removed the duplicate False Positive Rates taking the maximum associated Recall
value and plotted them in Figs. 5 and 6.
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4. Conclusion

Due to the increasing popularity and heavy use of social networks like Twitter, the number of spammers is rapidly grow-
ing. This has resulted in the development of several spam detection techniques [17–21]. This study has made three new con-
tributions to the field of spam detection on Twitter. First we view spam identification as an anomaly detection problem.
Secondly, we introduce 95 one-gram features from tweet text to the task of spam detection on Twitter. Finally, we use
the stream of real-time tweets as well as user profile information with two stream-based clustering algorithms, DenStream
and StreamKM++. When tested, these two approaches achieved 97.1% accuracy and 84.2% F-Measure and 94.0% accuracy and
74.8% F-Measure respectively. Our findings suggest the addition of one-gram features enhances spam detection. Although
these algorithms independently demonstrated good detection, the combination of the two further improved all our metrics
particularly recall and false positive rate to 100% and 2.2%, showing the value of the multi-layer approach to spam detection.
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