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1 Introduction

Explainable machine learning (ML) enables human learning from ML, human appeal of automated model
decisions, regulatory compliance, and white-hat hacking and forensic analysis of ML models.!»?'* Explainable
ML (i.e. ezplainable artificial intelligence or XAI) has been implemented in numerous open source and
commercial packages and explainable ML is also an important, mandatory, or embedded aspect of commercial
predictive modeling in industries like financial services.:*: However, like many technologies, explainable ML
can be misused, particularly as a faulty safeguard for harmful black-boxes, e.g. fairwashing, and for other
malevolent purposes like model stealing [1], [31], [34]. This text presents several definitions, examples, and
qualifications in Section 2 before covering the details of responsible and human-centered use guidelines in
Sections 3.1 — 3.4. This text concludes in Section 4 with the seemingly natural argument for a holistic
approach to ML that includes interpretable (i.e. white-box) models along with explanatory, debugging, and
disparate impact analysis techniques for any ML system that impacts humans.

2 Definitions and Examples

While explainable ML practitioners have seemingly not yet adopted a clear taxonomy of concepts or a precise
vocabulary, many authors have grappled with a variety of general concepts related to interpretability and
explanations. Some of these efforts include: “A Survey Of Methods For Explaining Black Box Models”
(Guidotti et al. [17]), “The Mythos of Model Interpretability” (Lipton [24]), Interpretable Machine Learning
(Molnar [27]), “Interpretable Machine Learning: Definitions, Methods, and Applications” (Murdoch et al.
[29]), and “Challenges for Transparency” (Weller [37]). To avoid ambiguity, this section addresses the terms
and phrases interpretable, explanation, explainable ML, white-box or interpretable models, model debugging,
fairness, and human-centered ML.

*H20.ai and George Washington University

I This text is not legal compliance advice.

2In the U.S., explanations and the model documentation they enable may be required under the Civil Rights Acts of 1964 and
1991, the Americans with Disabilities Act, the Genetic Information Nondiscrimination Act, the Health Insurance Portability
and Accountability Act, the Equal Credit Opportunity Act, the Fair Credit Reporting Act, the Fair Housing Act, Federal
Reserve SR 11-7, and the European Union (EU) Greater Data Privacy Regulation (GDPR) Article 22 [38].

3For security applications, see for instance: https://www.oreilly.com/ideas/proposals-for-model-vulnerability-and-
security.

4Like H20-3, XGBoost, and various other Python and R packages. See: https://github.com/jphall663/awesome-machine-
learning-interpretability for a longer, curated list of relevant open source software packages.

5For instance Datarobot, H20 Driverless AI, SAS Visual Data Mining and Machine Learning, Zest AutoML, and likely
several others.

6Working paper: “SR 11-7, Validation and Machine Learning Models”, Tony Yang, CFA, CPA, FRM. KPMG USA.
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2.1 Interpretable and Explanation

From the review and survey corpus, this text selects for an internal definition of interpretable, “the ability to
explain or to present in understandable terms to a human,” from “Towards a Rigorous Science of Interpretable
Machine Learning” (Doshi-Velez and Kim [7]). From “Explaining Explanations: An Approach to Evaluating
Interpretability of Machine Learning” (Gilpin et al. [13]), “when you can no longer keep asking why,” will
serve as an internal working definition of a viable ezplanation. These two thoughtful characterizations link
explanation to some ML process being interpretable and also provide an abstract objective for any given
explanatory task.

2.2 Explainable ML and Interpretable or White-box Models

Herein explainable ML means mostly post-hoc analysis and techniques used to understand trained model
mechanisms or predictions. Examples of common explainable ML techniques include:

e Local and global feature importance methods, in particular Shapley values [21], [25], [32], [33].

e Local and global model-agnostic surrogate models, such as surrogate decision trees and Local Inter-
pretable Model-agnostic Explanations (LIME) [4], [5], [6], [20], [30], [36].

e Local and global visualizations of model predictions such as accumulated local effect (ALE) plots, 1-
and 2-dimensional partial dependence plots, and individual conditional expectation (ICE) plots [3],

[11], [14).

Although difficult to quantify, credible research efforts into scientific measures of interpretability are
underway [10], [28]. Furthermore, the ability to measure degrees of interpretability implies it’s not a binary,
on-off quantity.” Here unconstrained, traditional black-box ML models, such as multilayer perceptron (MLP)
neural networks and GBMs, are said to be directly uninterpretable, potentially unsafe for use on humans,
but not necessarily completely unexplainable. In this text interpretable or white-box models will include
linear models, decision trees, constrained or Bayesian variants of traditional black-box ML models, or novel
types of models designed to be directly interpretable. Additional examples of sophisticated and interpretable
modeling techniques include explainable neural networks (XNNs), explainable boosting machines (EBMs),
monotonically constrained gradient boosting machines (GBMs), scalable Bayesian rule lists, or super-sparse
linear integer models (SLIMs), [35], [30], [30].%:9-10

2.3 Model Debugging and Fairness

Herein model debugging refers to testing ML models to increase trust in model mechanisms and predictions.
Examples of model debugging techniques include variants of sensitivity (i.e. “what-if?”) analysis, residual
analysis, assertions, and units test used to verify the accuracy or security of ML models.!! Model debugging
should also include remediating any discovered errors or vulnerabilities. Here fairness techniques refer to
disparate impact analysis, model selection by minimization of disparate impact, and remediation techniques
such as disparate impact removal preprocessing or equalized odds post-processing [3], [19].12

2.4 Human-Centered ML

Finally, this text does not seek to redefine human-centered ML which has a notable presence in the human
computer interaction (HCI) literature and is often associated with interactive software for enabling greater
human control and understanding of ML processes [12]. This text simply seeks to draw attention to mostly

"For instance, see Figure 3 in “Quantifying Interpretability of Arbitrary Machine Learning Models Through Functional
Decomposition” (Molnar et al. [28]).

8 As implemented in the Microsoft interpret library: https://github.com/microsoft/interpret.

9As implemented in XGBoost (https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html) or H20-3
(https://github.com/h20ai/h20-3/blob/master/h20-py/demos/H20_tutorial_gbm_monotonicity.ipynb).

10 And other similar techniques, say those mentioned here: https://users.cs.duke.edu/~cynthia/papers.html.

1 And other similar techniques, say those mentioned here: https://debug-ml-iclr2019.github.io/.

12 And other similar techniques, say those mentioned here: http://www.fatml.org/resources/relevant-scholarship.
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newer, but certainly some pre-existing or established, ML techniques that may further the goals of human-
centered ML. This text also acknowledges the importance of informed user interaction and user interface
design and implementation in the adoption of any proposed guidelines.

3 Guidelines

Four guidelines are presented and discussed in Sections 3.1 — 3.4 to assist practitioners in avoiding any
unintentional misuse or in identifying any intentional abuse of explainable ML techniques. The guidelines

are:
1. Use explanations to enable understanding, not trust.
2. Learn how explainable ML is used for nefarious purposes.
3. Augment surrogate models with direct explanations.
4. Use fully transparent ML mechanisms for systems that affect humans.

Important corollaries to the guidelines are also highlighted and simple, reproducible software examples
accompany the guidelines to avoid hypothetical reasoning whenever possible.

3.1 Guideline: Use Explanations to Enable Understanding, not Trust.

PAY 0 _ PAY_0 = 2 month delay PAY_0 = 3 month delay PAY_0 = 4 month delay
eav_2 I » On-time payment .
— * Defaue o
PAY_AMT2 1 o S " g, g
pay 3 [N
ey av1 [N N @.,,_I\ -
by Cmy,

Residual
o

ray_avTs [N -2

i avr1 [
eay o [
ray ¢ N
rav s [

ray avTe [N ln

eav_avTs [ .

PAY_0 = 5 month delay PAY_0 = 6 month delay PAY_0 = 7 month delay PAY_0 = 8 month delay

2

1

Residual

ray avT3 [l

i avTs [l PAY_0 = no consumption (-2)  PAY_0 = pay duly (-1) PAY_0 = use of revolving credit {0} PAY 0 = 1 month delay

_anr3 [l 2 " 2| “
au_ors ~ N s SN
= S S a) S

BILL_AMT6 l
O ™
2 -2

Residual
o

BILL_AMT4 |
000 005 010 015 020 025 030 035 040 000 025 050 075 000 025 050 075 000 025 050 075 000 025 050 075
mean(|SHAP value|) (average impact on model output magnitude) Predicted Predicted Predicted Predicted

(a) Consistent global Shapley feature impor- (b) gaem deviance residuals and predictions by PAY_0.

tance values for ggpwm.

Figure 1: An unconstrained GBM probability of default model, gggm, generally over-emphasizes the impor-
tance of the input feature PAY_0, a customer’s most recent repayment status. ggpm produces large positive
residuals when PAY_0 indicates on-time payments (PAY_0 < 1) and large negative residuals when PAY_O in-
dicates late payments (PAY_0 > 1). Combining explanatory and debugging techniques shows that gapm is
explainable, but probably not trustworthy.

While they are likely necessary for trust in many cases, explanations are certainly not sufficient for trust
in all cases. Explanation, as a general concept, is related more directly to understanding and transparency



than to trust.'® Simply put, one can understand and explain a model without trusting it. One can also trust
a model and not be able to understand or explain it. Consider the following example scenarios.

e Explanation and understanding without trust: In Figure 1, global Shapley explanations and
residual analysis identify a pathology in an unconstrained GBM model, ggpm, trained on the UCI
credit card dataset [22].'* gapw over emphasizes the input feature PAY_0, or a customer’s most recent
repayment status. Due to over-emphasis of PAY_0, gggm is often unable to predict on-time payment if
recent payments are delayed (PAY_0 > 1), causing large negative residuals. gapm is also often unable
to predict default if recent payments are made on-time (PAY_0 < 1), causing large positive residuals.
In this example scenario, gapwm is explainable, but not trustworthy.

e Trust without explanation and understanding: Years before reliable explanation techniques
were widely acknowledged and available, black-box predictive models, such as autoencoder and MLP
neural networks, were used for fraud detection in the financial services industry [15]. When these
models performed well, they were trusted.'®> However, they were not explainable or well-understood
by contemporary standards.

If trust in models is your goal, then explanations alone are not sufficient. However, as discussed in
Sections 3.4 and 4 and illustrated in Figure 4, in an ideal scenario, explanation techniques would be used
with a wide variety of other methods to increase accuracy, fairness, interpretability, privacy, security, and
trust in ML models.

3.2 Guideline: Learn How Explainable ML is Used for Nefarious Purposes.

When used disingenuously, explainable ML methods can provide cover for misused or intentionally abusive
black-boxes [1]. Explainable ML methods can also enable hacking or stealing of models through public
prediction APIs or other endpoints [34]. Moreover, explainable ML methods are likely to be used for other
nefarious purposes in the future and may be used for unknown destructive purposes now. Responsible
practitioners need to understand the malevolent side of this technology to better detect and correct misuse
and abuse. Given that explainable ML techniques have already been released in popular open source and
commercial software, it seems there is a need for agreed-upon best practices and education on responsible use.

3.2.1 Guideline Corollary: Explainable ML Can be Used to Crack Nefarious Black-boxes.

Used as white-hat hacking tools, explainable ML methods can draw attention to potential fairness or accuracy
problems in proprietary black-boxes. See Angwin et al. [2] for evidence that cracking of commercial black-box
models for oversight purposes is possible.'® Such investigations would likely only be improved by advances
in explanatory and fairness tools.

3.3 Augment Surrogate Models with Direct Explanations.

Models of models, or surrogate models, can be helpful explanatory tools, but they are usually approximate,
low-fidelity explainers. Aside from 1.) a global or local summary of a complex model provided by a surrogate
model can be helpful sometimes and 2.) much work in explainable ML has been directed toward improving
the fidelity and usefulness of surrogate models [1], [5], [6], [20], [36], many explainable ML techniques have
nothing to do with surrogate models! One of the most exciting breakthroughs for supervised learning problems
in explainable ML is the application of a coalitional game theory concept, Shapley values, to compute feature

13The Merriam-Webster definition of ezplain, accessed May 8" 2019, does not mention trust: https://www.merriam-webster.
com/dictionary/explain.

1 Code to replicate Figure 1 is available here: https://github.com/jphall663/responsible_xai.

15For example: https://www.sas.com/en_ph/customers/hsbc.html, https://www.kdnuggets.com/2011/03/sas-patent-
fraud-detection.html.

16This text makes no claim on the quality of the analysis in Angwin et al. (2016), which has been criticized [9]. This now
infamous analysis is presented only as evidence that motivated activists can crack commercial black-boxes using surrogate
models and other explanatory techniques.
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attributions which are consistent globally and accurate locally using the trained model itself [25], [33]. An
extension of this idea, called tree SHAP, has already been implemented for popular tree ensemble methods

[26].

Al
: <
um < 09228689
08
NA]
< >=

06

— Percentile 0
— Percentile 10
— Percentile 20
— Percentile 30
— Percentile 40
— Percentile 50
— Percentile 80
— Percentile 70
Percentile 80
Percentile 90
Percentile 99
== Partial dependence

num9 < 0.72969717

0.4

nums < -1.1400975

0z

-4 =3 -z -1 o 1 2 3
num3

(b) Partial dependence and ICE curves generated di-
rectly from the explained model, gcMm.

0.41895837

(a) Naive hiree, a surrogate model, forms an approximate overall
flowchart for the explained model, gapm-

Figure 2: hiee displays known interactions in f = Xpum1 * Xoumd + [ Xnums| * X2me for ~ —0.923 < X ume <~
1.04. Modeling of the known interaction between Xpym9 and Xyums in f by ggm is confirmed by the
divergence of partial dependence and ICE curves for ~ -1 < Xum9 <~ 1. Explanations from a surrogate

model have augmented and confirmed findings from a direct model visualization technique.

There are many other explainable ML methods that operate on trained models directly such as partial
dependence, ALE, and ICE plots [3], [L1], [I4]. Surrogate models and explanatory techniques that operate
directly on trained models can also be combined, for instance by using partial dependence, ICE, and surrogate
decision trees to investigate and confirm modeled interactions [18]. In Figure 2, an unconstrained GBM,
gaBM, models a known signal generating function f:

_ 1 if Xnum1 * Xnuma + |Xnum8| * Xgumg +e>0.42
f(X) = { 0 if Xyumi * Xnuma + [ Xnums| * Xm0 + € < 0.42 (1)

where e signifies the injection of random noise in the form of label switching for roughly 15% of the training
and validation observations.!” ggpwm is then trained such that gopm(X) ~ f(X) in training and vali-
dation data. hiee, displayed in Figure 2a, is extracted such that hgree(X) » gopm(X) » f(X) in vali-
dation data. Partial dependence and ICE plots are generated directly for ggpm in the same validation
data and overlaid in Figure 2b. The parent-child node relationship displayed between X,um9 and Xpums
for ~ =0.923 < X umo <~ 1.04 in 2a and the divergence of ICE and partial dependence curves in 2b for
~ =1 < Xypumo <~ 1 help confirm and understand how ggpm learned the interaction between X, ,mg and
Xpume in f. Like in Figure 1, combining different approaches provided additional, beneficial information
about a complex ML model.

3.3.1 Guideline Corollary: Augment LIME with Direct Explanations.

LIME is important, imperfect (like every other ML technique), and one of many explainable ML tools.
LIME, in it’s most popular implementation, uses local linear surrogate models to explain regions of com-
plex, machine-learned response functions [30]. Like other surrogate models, LIME can be combined with
model-specific methods to yield deeper insights. Consider that tree SHAP can provide locally accurate and

17Code to replicate Figure 2 is available here: https://github.com/h20ai/mli-resources/tree/master/lime_shap_treeint_
compare.
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consistent point estimates for local feature importance as in 3b. LIME can then provide approximate infor-
mation about modeled local linear trends around the same point. Table 1 contains LIME hqrm coefficients
for a local region of a validation set sampled from the UCI credit card data defined by PAY .0 > 1, or cus-
tomers with a fairly high risk of default due to late most recent payments.'® hgry models the predictions
of a simple interpretable decision tree model, giee, displayed in 3a. hgrm coefficients show linear trends
between features in the sampled set Xpay_ 01 and giree (Xpav.os1). Because hgpay is relatively well-fit (0.73
R?) and has a logical intercept (0.77), it can be used along with Shapley values to reason about the modeled
average behavior for risky customers and to differentiate the behavior of any one specific risky customer from
their peers under the model. This additional information can be useful for model debugging and compliance
purposes.

Table 1: Coefficients for a local linear interpretable model, hgpy, with an intercept of 0.77 and an R? of
0.73. hgpwm is trained on a segment of the UCI credit card dataset containing higher-risk customers with late
most recent repayment statuses, Xpay -1, and the predictions of a simple decision tree, giree(Xpay_0s1)-

harm haLm
Feature Coefficient
PAY O == 4 0.0009
PAY 2 == 3 0.0065
PAY 5 == 2 —-0.0006
PAY 6 == 2 0.0036
BILL_AMT1 3.4339e-08
PAY_AMT1 4.8062e-07
PAY_AMT3 -5.867e-07

3.4 Use Fully Transparent ML Mechanisms for Systems That Affect Humans.

Explanation, along with white-box models, model debugging, disparate impact analysis, and the documenta-
tion they enable, are often required under numerous regulatory statutes in the U.S. and E.U., and explainable
ML tools like surrogate models, partial dependence plots, and global feature importance are already used to
document, understand, and validate different types of models in the financial services industry [20], [36].% ©
Moreover, adverse action notices are mandated under the Equal Credit Opportunity Act (ECOA) and the
Fair Credit Reporting Act (FCRA) for many credit lending, employment, and insurance decisions in the
United States.'? If ML is used for such decisions it must be explained in terms of adverse action notices.?’
Shapley values, and other local feature importance approaches, provide a convenient methodology to rank
the direct contribution of input features to final model decisions and potentially generate customer-specific
adverse action notices. In these application domains, interpretability is simply a legal necessity.

Aside from regulatory mandates, explanation enables logical appeal processes for automated decisions
made by ML models. Consider being negatively impacted by an erroneous black-box model decision, say
for instance being mistakenly denied a loan or parole. How would you argue your case for appeal without
knowing how model decisions were made? According to the New York Times, a man named Glenn Rodriguez
found himself in this unfortunate position in a penitentiary in Upstate New York in 2016.%!

Some may argue that, outside of regulated dealings, for a model with little or no impact on humans and
that has been thoroughly and responsibly tested by knowledgeable practitioners, that explanation is really
unnecessary. While that statement appears technically true, the counter argument in this case centers on

18Code to replicate Table 1 is available here: https://github.com/jphall663/responsible_xai.

19ee: https://consumercomplianceoutlook.org/2013/second-quarter/adverse-action-notice-requirements-under-
ecoa-fcra/.

20This is apparently already happening: https://www.prnewswire.com/news-releases/new-patent-pending-technology-
from-equifax-enables-configurable-ai-models-300701153.html.

21This too is happening today: https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-
justice.html.
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human learning from ML models. Explanatory techniques allow practitioners to gain insights from complex
models about nonlinear or faint phenomena and complex interactions — information that may sometimes be
unlearnable by linear models. Also, why go through the weeks, months, or years of training and deploy-
ing a production ML system, and not take a small percentage of that time to learn about the model’s findings?

3.4.1 Guideline Corollary: Use Interpretable Models Along with Explanation Techniques.
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(a) Simple decision tree, giree, trained on the UCI credit card data to (b) Locally-accurate Shapley contributions
predict default with validation AUC of 0.74. The decision policy for a for the highlighted individual’s probability
high-risk individual is highlighted in red. of default.

Figure 3: A simple decision tree, gipee, is trained on the UCI credit card dataset to predict probability of
default. gyree has a validation AUC of 0.74. The decision-policy for a high-risk customer is highlighted in 3a
and the locally-accurate Shapley contributions for this same individual’s predicted probability are displayed
in 3b. The Shapley values are helpful because they highlight the local importance of PAY_2, the individual’s
second most recent repayment status, which could be underestimated by examining the decision policy alone.

A few well-known publications have focused either on white-box modeling techniques (e.g. Ustun and
Rudin [35], Yang et al. [39]) or on post-hoc explanations (e.g. Lundberg and Lee [25], Ribeiro et al. [30]),
but the two can be used together in the context of a broader and more human-centered ML workflow as
illustrated in Figure 4. Consider the seemingly useful example case of augmenting globally interpretable
models with local post-hoc explanations. A practitioner could train a single decision tree, a globally in-
terpretable model, then apply local explanations in the form of Shapley feature importance as illustrated
in Figure 3.?? This enables the practitioner to see accurate numeric feature contributions for each model
prediction in addition to the entire directed graph of the decision tree. Even for interpretable models, such
as linear models and decision trees, it has been shown that Shapley values present accuracy and consistency
advantages over standard feature attribution methods [23], [26], [25]. Shapley values also enable the ranking
of input features for each model decision, which is likely helpful for FCRA and ECOA compliance. Another
twist on the idea of combining explainable ML methods and white-box models is described in “Surrogate
Assisted Feature Extraction for Machine Learning (SAFE ML)” (Gosiewska et al. [10]). In the SAFE ML
approach, features learned by more complex models are extracted and used in an explainable fashion to in-
crease the accuracy of more interpretable models. Aren’t either of these augmented processes more desirable
than either a white-box model or post-hoc explanations alone?

3.4.2 Guideline Corollary: Use Explanations Along with Disparate Impact Analysis.

Like white-box models, fairness methods (e.g. Feldman et al. [3], Hardt et al. [19]) are often presented in
different articles than post-hoc explanatory methods. However, in banks, using post-hoc explanatory tools
such as partial dependence plots to comply with model documentation guidance often goes along with using

22Code to replicate Figure 3 is available here: https://github.com/jphall663/responsible_xai.
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disparate impact analysis to comply with fair lending regulations.® 23?4, To clarify, explanatory techniques
should not replace disparate impact testing for bias detection purposes, but in general, explanations increase
transparency and understanding of model mechanisms and predictions while disparate impact auditing and
remediation increases trust that model predictions are as fair as possible. As in previous sections, trust and
understanding are different but complimentary goals achieved by combining multiple approaches.

Table 2: Basic group disparity metrics across different marital statuses for monotonically constrained GBM
model, gmono, trained on the UCI credit card dataset.

Adverse | Accuracy TPR TNR FPR FNR
Impact Disparity Disparity | Disparity | Disparity | Disparity
Disparity
married | 1.00 1.00 1.00 1.00 1.00 1.00
single 0.89 1.03 0.99 1.03 0.85 1.01
divorced | 1.01 0.93 0.81 0.96 1.25 1.22
other 0.26 1.12 0.62 1.17 0 1.44

Table 2 displays basic group disparity metrics for a monotonically constrained GBM model, gmono, trained
on the UCI credit card data.?” In this example scenario, gmeno displays group parity according to the four-
fifths rule with married as the reference level for single customers, but exposes potential disparate impact
for divorced customers and customers with martial status of other (for which there is very little training
data). Alternative models with less disparate impact or other remediation processes should be considered in
such cases to increase trust ML systems.

4 Conclusion

ML systems are used today to make life-altering decisions about employment, bail, parole, and lending.?°
The scope of decisions delegated to ML systems seems likely only to expand in the future. Many researchers
and practitioners are tackling disparate impact, inaccuracy, privacy violations, and security vulnerabilities
with a number of brilliant, but perhaps siloed, approaches. By presenting some straightforward explainable
ML guidelines, this short text also gives examples of combining innovations from several sub-disciplines of
ML research to train explainable, fair, and trustable predictive modeling systems. As proposed in Figure 4,
using these techniques together can create a new and more human-centered type of ML potentially better-
suited for use in business- and life-critical decision support than conventional methods.

23White paper: https://www.aba.com/Compliance/Documents/FairLendingWhitePaper2017Apr.pdf.

24Policy Statement on Discrimination in Lending: https://www.govinfo.gov/content/pkg/FR-1994-04-15/html/94-9214.
htm.

25Code to replicate Table 2 is available here: https://github.com/jphall663/responsible_xai.

26ICLR 2019 model debugging workshop CFP: https://debug-m1-iclr2019.github.io/.
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Figure 4: A diagram of a proposed human-centered ML workflow in which explanations (highlighted in
green) are used along with interpretable or white-box models, disparate impact analysis and remediation
techniques, and other review and appeal mechanisms to create a fair, accountable, and transparent ML
system.
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